US009417993B2

a2 United States Patent

Gataullin et al.

US 9,417,993 B2
*Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

REAL TIME ANALYSIS OF TRACER
SUMMARIES TO CHANGE TRACER
BEHAVIOR

Applicant: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)

Inventors: Renat Gataullin, Toronto (CA);
Alexander G. Gounares, Kirkland, WA
(US); Christopher W. Fraser, Seattle,
WA (US)

Assignee: Microsoft Technology Licensing, LL.C,

Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/820,834

Filed: Aug. 7, 2015

Prior Publication Data

US 2015/0347277 Al Dec. 3, 2015

Related U.S. Application Data

Continuation of application No. 13/916,566, filed on
Jun. 12, 2013, now abandoned, which is a
continuation-in-part of application No. 13/867,057,
filed on Apr. 20, 2013.

Int. Cl.
GO6F 9/44 (2006.01)
GO6F 11/36 (2006.01)
(Continued)
U.S. CL
CPC ... GOG6F 11/3672 (2013.01); GO6F 11/3466

(2013.01); GO6F 11/3636 (2013.01); GO6F

SYSTEM WITH ANALYSIS
OF USER INTERACTIONS

11/3676 (2013.01); GOGF 11/323 (2013.01);
GOGF 2201/865 (2013.01)
(58) Field of Classification Search
CPC GOG6F 11/3636; GOGF 11/3466
USPC 717/128
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,058,928 B2* 6/2006 Wygodny GO6F 11/3636
714/E11.212
GO6F 11/3423

717/124

7,093,234 B2* 82006 Hibbeler

(Continued)
OTHER PUBLICATIONS

Notice of Allowance dated Nov. 20, 2015 cited in U.S. Appl. No.
14/629,322.

(Continued)

Primary Examiner — Wei Zhen

Assistant Examiner — Clint Thatcher

(74) Attorney, Agent, or Firm — Ben Tabor; Aaron Hoff;
Micky Minhas

(57) ABSTRACT

Real time analysis of tracing data may identify functions for
which tracing may be enhanced or reduced. A tracer that
generates function-level data may have an aggregator that
summarizes the data. Potential changes to tracing configura-
tion may be identified by analyzing the summarized data to
determine whether or not each function is being traced at a
level commensurate with that function’s impact to the sum-
marized data. Those functions with little significant contribu-
tion may have their tracing reduced, while those functions
with more significant contribution may have their tracing
enhanced. The analysis of the summarized data may be per-
formed in real time in some instances, causing a tracer to
change the data collected while an application executes.

20 Claims, 12 Drawing Sheets

500 APPLICATION
B02er 60
EXECUTION
ENVIRONMENT | poiNTER
606
& 618
814
M~—— — TRACER LIST
TRACING [FUNCTION | TRACING Ja—|
CONFIGURATION [2{XkpRession | GONFIG (45| TRACER LIBRARY
620 —— DATA GATHERER
612 610
624 622 NN __SUMMARIZER
[_PERFORMANCE |
PERFORMANCE iR T o
— —
628 626 Bils\lALVSES —
PROJECT-SPECIFIC ANALYSES] ADASER
"
=

PERSONAL
PREFERENCES

=
_'w
i
&

EAM PREFERENCES]
COMPANY

PREF ERENCES

[l 63.

I

650
UPDATES|

ﬁgﬁ_

648

DATA vl
SUMMARIES

640
(/ VISUALIZATIONS
42 /
USER
INTERACTIONS

\\ 644
USER PROFILE

USER INTERACTION 646
ANALYZER <

US 9,417,993 B2
Page 2

(51) Int.CL
GOGF 11/34
GOGF 11/32

(56)
U.S.
7,827,539 B1*

8,756,581
2002/0138788

B2
Al*

2002/0199172
2008/0127108

Al

Al*
2008/0127112 Al*
2008/0155348 Al*
2008/0155349 Al*

2009/0049428
2009/0089765

Al
Al*
2009/0150874 Al*

2010/0011341
2011/0289485

Al
Al*

2012/0204156 Al*

2013/0061212 Al*
2013/0227536
2013/0283242
2014/0053143
2014/0215444

Al
Al
Al
Al*

2014/0317454
2014/0317603
2014/0317604
2014/0317605
2014/0317606
2015/0242303

Al
Al
Al
Al
Al
Al

(2006.01)
(2006.01)

References Cited
PATENT DOCUMENTS
11/2010 Wygodny

6/2014
9/2002

Castanos et al.
Yenne

12/2002
5/2008

Bunnell
Ivanov

5/2008

6/2008

6/2008

2/2009
4/2009

6/2009

1/2010
11/2011

Baierl et al.
Mejdrich

8/2012
3/2013

8/2013
10/2013
2/2014
7/2014

Lietal.
Gounares
Conrod et al.
VOCCIO vvvveiiiiiiane
10/2014
10/2014
10/2014
10/2014
10/2014
8/2015

Gataullin et al.
Gataullin et al.
Gataullin et al.
Gataullin et al.
Gataullin et al.
Gautallin et al.

GO6F 11/3409
717/128

GOG6F 9/465
714/38.12

GO6F 11/3495
717/128
GO6F 11/3636
717/128
GO6F 11/3466
714/45

GO6F 11/3466
714/45

... GO6F 8/443

717/144
GOGF 8/4441
717/151

GO6F 11/3636
717/128
GO6F 11/366
717/128
GO6F 11/3636
717/128

GO6F 11/3644
717/128

OTHER PUBLICATIONS

Office Action dated Jan. 13, 2016 cited in U.S. Appl. No. 13/867,057.
U.S. Appl. No. 14/820,798, filed Aug. 7, 2015, Gataullin et al.

U.S. Appl. No. 14/642,192, filed Mar. 9, 2015, Gataullin, et al.
International Search Authority, International Search Report and
Written Opinion, Korea Intellectual Property Office, PCT/US2014/
011727, 10061-02.

Grossbart, Zack, “JavaScript Profiling With the Chrome Developer
Tools”, Smashing Magazine website; Jun. 12, 2012.

Cantrill, Bryan, “Instrumenting the real-time web: Node.js in pro-
duction”, Node Summit 2012 Presentation; Jan. 24-25, 2012.
Whitehead, Nicholas, “Java run-time monitoring, Part 2:
Postcompilation instrumentation and performance monitoring—In-
terception, class wrapping, and bytecode instrumentation”, IBM.
com website; Aug. 5, 2008.

Kinsey, Sean, “Under the Hood: The JavaScript SDK—FError Han-
dling”; Facebook.com website; Nov. 1, 2012.

“Method and System for Automatically Tracking User Interactions
and Providing Tags to the User Interactions”; An IP.com Prior Art
Database Technical Disclosure; Dec. 4, 2010.

“Automagically Wrapping JavaScript Callback Functions”,
tlrobinson.net.blog; Oct. 22, 2008, 4 years.

U.S. Appl. No. 13/867,057, mail date Aug. 14, 2014, Office Action.
U.S. Appl. No. 13/867,057, mail date Mar. 19, 2015, Office Action.
U.S. Appl. No. 13/916,561, mail date Oct. 2, 2014, Office Action.
U.S. Appl. No. 13/916,561, mail date Mar. 4, 2015, Notice of Allow-
ance.

U.S. Appl. No.
U.S. Appl. No.
U.S. Appl. No.
U.S. Appl. No.
U.S. Appl. No.

13/916,563, mail date Feb. 12, 2015, Office Action.
13/916,566, mail date Feb. 13, 2015, Office Action.
13/916,568, Jan. 14, 2015, Notice of Allowance.
13/916,571, Jan. 15, 2015, Notice of Allowance.
13/867,057, mail date Oct. 6, 2015, Office Action.
U.S. Appl. No. 14/820,798, mail date Sep. 24, 2015, Office Action.
U.S. Appl. No. 14/629,322, mail date Aug. 26, 2015, Office Action.
Notice of Allowance dated Apr. 6, 2016 cited in U.S. Appl. No.
14/820,798.

Notice of Allowance dated May 23, 2016 cited in U.S. Appl. No.
14/642,192.

Office Action dated Jun. 3, 2016 cited in U.S. Appl. No. 13/867,057.

* cited by examiner

U.S. Patent Aug. 16, 2016 Sheet 1 of 12 US 9,417,993 B2

— —

TRACER
LIBRARY

FUNCTION
PARSING

110
TRACER CLOSURE

1
[FuncTION |108 /

/
| DATA CAPTURE |
1127 ~ 114 /
| DATATRANSMITTER | ’

- 118
- e EXECUTION
———— ENVIRONMENT

DATA
GATHERER

100 ~—""""124
METHOD FOR TRACING VISUALIZATION
AN APPLICATION

FIG. 1

U.S. Patent Aug. 16, 2016 Sheet 2 of 12 US 9,417,993 B2

ENVIRONMENT

DATA GATHERER WITH TRACING
SYSTEM 200
240 ANALYZER
H SYSTEM
248
i ~

TRACER [~ 2%°
DATA | RENDERER |

252~ -254

DATA
GATHERER [_ANALYZER |
240~ =244 NE e " HARDWAG{2E50
HARDWARE 238
PLATFORM PLATFORM

] .
| | 236 224 232 |
I | [ANALYZER < DATA !
' LIBRARIES | GATHERER [
| 222~ !
| | [APPLICATION]| 226 234 | [_PEVICE
|
I > |
| TRACER
TRACER AT [
' LIBRARY. [
! EXECUTION I
| | ENVIRONMENT (228 e ﬁa’fzo :
i INTERPRETER — * S OMPILER |
|
I 220 |
I | OPERATING SYSTEM |"218 ,
\ o ________ I
zo’éf 22]
SOFTWARE < S
| 214 |
COMPONENTS , W USER] |
| 208~ _/|INTERFACE] |
| |
204~ [PROCESSOR| 216 |
HARDWARE | 210 \ NETWORK | |
PLATFORM : MEMORY INTERFACE] !

—_—_—e— e e, e e e e e e e e e — — —— —

U.S. Patent Aug. 16, 2016 Sheet 3 of 12 US 9,417,993 B2

302~
| RECEIVE APPLICATION |
304~ v

BEGIN EXECUTION WITH
TRACING LIBRARY

Lt D)

RECEIVE FUNCTION TO
EXECUTE ~306

308

316

COLLECT DATA AT
EXECUTION START

ALREADY
WRAPPED?

318
310~ BEGIN EXECUTION OF
GENERATE FUNCTION FUNCTION
IDENTIFIER >
312~ v b 4 320
RS G HonTIon. G yes)

314~ v
| CREATE TRACER CLOSURE |
|

322

COLLECT DATA AT
EXECUTION END

v 324
TRANSMIT DATA TO
COLLECTOR
300 6
METHOD FOR RETURN

TO CALLING
FUNCTION?

EXECUTING FUNCTION
WITH TRACING

FIG. 3

U.S. Patent Aug. 16, 2016 Sheet 4 of 12 US 9,417,993 B2

N —
SYSTEM WITH Eé(E)?r\&JTTEI(F)zN o
TRACER LIST 404 ="
) AsASS~ TN 402
s~ | APPLICATION
— e CODE
N
AN
M e
— N~
406~
TRACER LIST Q
[WHITE LIST | | CONFIGURATIONS
410~ 408 | 455
[BLACKLIST | |[™ peguGGING]
[PERFORMANCE |
A2 T30~ 428
[MONITORING |
420 l 414~
WRAPPER
FUNCTION
CONFIGURATION }:
l 416~
418~ EXECUTE
| TRACER | «<———| FUNCTION WITH
i TRACER WRAPPER
422
424
> ANALYSIS/
TRACER
DATA

VISUALIZATION

FIG. 4

U.S. Patent Aug. 16, 2016 Sheet 5 of 12 US 9,417,993 B2

(N —— A
TFT_/IASC_II_ER EXECUTION POINTER et SN
a3 ENVIRONMENT 5 NSO
—_— | A~~~
FUNCTION TRACING NOOOON
EXPRESSION CONFIGURATION oo
512 514 p——
L~
516~ {MODULE:FOO MONITORING | ~—% 504
518~FILE:BAR PERFORMANCE 506~ APPLICATION
520" FUNCT:X WHEN Y=0 DEBUG TRACER LIBRARY
T N T~]
[DATAGATHERER |
508 538~ ~536
UPDATES | SUMMARIZER |
526 524
TRACER LIST| g—~] REAL TME |&e——
MANAGER ANALYZER TRACER 522
530 RESULTS
OFFLINE ‘_’/
ANALYZER
534
USER (932
INTERACTION || VISUALIZATIONS |
ANALYZER
500
SYSTEM WITH

UPDATED TRACER LIST

FIG. 5

U.S. Patent Aug. 16, 2016 Sheet 6 of 12 US 9,417,993 B2

SYSTEM WITH ANALYSIS

OF USER INTERACTIONS —
600 APPLICATION]| o~
602~ 6047] A~
EXECUTION amn
ENVIRONMENT | poNTER OO ON
N e
R T P
L T W N
T, 616 618 L —
514~ ¢ T
_// TRACER LIST 608~
TRACING ~ FUNCTION | TRACINGT
—A | TRACER LIBRARY
CONFIGURATION w——| EXPRESSION| CONFIG |[~—¥
620 | DATAGATHERER |
| DEBUGGING | 612~ 610
624~ 622 NN | SUMMARIZER |
PERF ORMANCE
| | 652 ¢
[MONITORING | UPDATES 636 634
628 = 626 [ANALYSES]|
[PROJECT-SPECIFIC | |<— TRACER
RESULTS
PERSONAL 638~ e
PREFERENCES DATA l
632~ <630 SUMMARIES 640
TEAM PREFERENCES| / |VISUALIZATIONS[[|
COMPANY 642~ /
PREFFRENCES USER
| <634 INTERACTIONS
|
* \\
650 644
UPDATES USER PROFILE
USER INTERACTION 646
ANALYZER USER MODE
648

FIG. 6

U.S. Patent Aug. 16, 2016 Sheet 7 of 12
712
i
TRACER LIST APPLICATION|[(o~
704" e~
L g
LA
POINTER A
\/_/ A
()
TRACER LIST |&—
MANAGER ~——__ | TRACER
C) EXECUTION ENVIRONMENT

CODE
REPOSITORY
714

LIBRARY 716

718~
| CODE |

[BUG REPORTS]|
722~ =720
[METADATA |

AT
]

TRACER
LIBRARY 724

726~
| CODE |

[BUG REPORTS|
730~ 728
| METADATA |

N~

FIG. 7

TRACING
HISTORY

734
ERROR LIST

N
732 702

700

SYSTEM WITH TRACING
LIST MANAGER

US 9,417,993 B2

U.S. Patent Aug. 16, 2016 Sheet 8 of 12 US 9,417,993 B2

USING TRACER LIST

IN COMPILED
802~ ENVIR(;I(;I(I)\/IENTS
| RECEIVE APPLICATION |
804~ v
| BEGIN COMPILATION |

v 806
| IDENTIFY FUNCTION |
v 808
| LOOK UP FUNCTION IN TRACER LIST |
v 810
| EVALUATE EXPRESSION |
v 812
[DETERMINE TRACING CONFIGURATION |
v 814
COMPILE FUNCTION WITH TRACING
WRAPPER AND TRACING
CONFIGURATION
6
ANOTHER

FUNCTION?

_________________ 818
| _ STORE COMPILED APPLICATION _ _|
v 820

EXECUTE WITH EMBEDDED TRACING
CONFIGURATION

FIG. 8

U.S. Patent Aug. 16, 2016 Sheet 9 of 12

902~
| RECEIVE APPLICATION |
204~ v
| BEGIN EXECUTION |
v 906
| IDENTIFY FUNCTION |
v 908
| LOOK UP FUNCTION IN TRACER LIST |
v 910
| EVALUATE EXPRESSION |
v 912
[DETERMINE TRACING CONFIGURATION |
v 914

WRAP FUNCTION WITH TRACER AND
CONFIGURATION

v 916
| EXECUTE FUNCTION WITH TRACER |
v 918

COLLECT TRACER DATA ACCORDING
TO CONFIGURATION

v ~920
SUMMARIZE TRACER DATA
ACCORDING TO CONFIGURATION

v 922

STORE DATA ACCORDING TO
CONFIGURATION

924

ANOTHER
FUNCTION?

US 9,417,993 B2

USING TRACER LIST
IN RUNTIME
ENVIRONMENTS
900

U.S. Patent Aug. 16, 2016 Sheet 10 of 12 US 9,417,993 B2

1002~
[___EXECUTE APPLICATION | ANALYZING TRACER DATA
o 1004 TO ADJUST TRACING
[ENCOUNTER FUNCTION | 1000
v ~1006
TRACE FUNCTION AND COLLECT
TRACER DATA
v 1008
[sSuMMARIZE TRACER DATA |

1010

[TRANSMIT TRACER DATA |}----1»|
v 1014
[RESET TRACER COUNTERS |
l 1022
CONTRIBUTION TO SUMMARY

1024

|

|

|

|

|

: 1020 ANALYZE FUNCTION’S
|

|

|

|

| APPROPRIATE?
|

|

101 6/\/I ~— 1026
DETERMINE IF FUNCTION HAS
ANDAIA¥,§ I'?OO,ED—I—JTJ%?'ER SPECIFIC CONFIGURATION

TRACING LEVEL

CONFIGURATION
DEFINED?

TOO
LITTLE CONTRIBUTION
TJOO LITTLE/TOO

1032
| REDUCE TRACING LEVEL |5

v 1034
[INCREASE TRACING LEVEL |

FiIG. 10

U.S. Patent Aug. 16, 2016 Sheet 11 of 12 US 9,417,993 B2

v 1102
[RECEIVE TRACER DATA |
i) 1o INTERACTION ANALYSIS
~ TO ADJUST TRACING

DISPLAY TRACER DATA IN 1100
VISUALIZATIONS

v 1106
PERFORM USER-REQUESTED
ANALYSIS ON TRACER DATA

v 1108
| SUMMARIZE DATA |
v 1110

TRACK USER INTERACTIONS
WITH DATA

]

1

v 1112 |

DETERMINE A USE MODE FOR v
USER

FOR EACH
USER MODE
1118
116 IDENTIFY HIGH INTEREST
FUNCTIONS

v ~1120
IDENTIFY LOW INTEREST
FUNCTIONS

FOR EACH

1114———~__J FUNCTION
ANALYSIS OF USER 1124
INTERACTIONS AND 11922 COMPARE INTEREST LEVEL

TRACING ADJUSTMENT TO TRACING LEVEL

TOO
LOW

TOQO LOW/
TOO HIGH?

TOO HIGH ~1132
[LOWER TRACING LEVEL

v ~1134
| RAISE TRACING LEVEL |
I‘

1136~ v

CONSOLIDATE SETTINGS INTO
A CONFIGURATION

U.S. Patent Aug. 16, 2016 Sheet 12 of 12 US 9,417,993 B2

1202
[EXECUTE APPLICATION |
» 1204
[[DENTIFY A FUNCTION TO TRACE] ERROR ANALYSIS
1206 TO ADJUST TRACING
[ATTEMPT TO TRACE FUNCTION | 1200
1208

ERROR?

1210

GATHER METADATA
REGARDING ERROR

v 1212
STORE ERROR IN ERROR | ___
DATABASE

v 1218
AGGREGATE ERRORS FROM
MULTIPLE TRACES

1218

| AGGREGATE ERRORS FROM |
|__MULTIPLE APPLICATIONS _|

FOR EACH FUNCTION &
IDENTIFIED IN AN

ERROR

|

|

|

|

|

|

|

|

|

|

|

|

| — ~1222

[1220 DETERMINE CONDITIONS

! UNDER WHICH ERROR

OCCURRED
1214~ v 1224
ANALYSIS SEARCH FOR CONDITIONS

OF ERRORS WHERE TRACING WAS
SUCCESSFUL

1226 1228

nO [UPDATE TRACER
LIST TO EXCLUDE
FUNCTION

1230~ YES
IDENTIFY CONDITIONS UNDER
WHICH ERROR OCCURRED

1232~ v
UPDATE TRACER LIST WITH
CONDITION DEFINITION

riIG. 12

US 9,417,993 B2

1
REAL TIME ANALYSIS OF TRACER
SUMMARIES TO CHANGE TRACER
BEHAVIOR

CROSS REFERENCE TO RELATED
APPLICATIONS

This patent application is a continuation of and claims
benefit of and priority to U.S. patent application Ser. No.
13/916,566 entitled “Real Time Analysis of Tracer Summa-
ries to Change Tracer Behavior” filed 12 Jun. 2013, which is
a continuation in part and claims benefit of and priority to
U.S. patent application Ser. No. 13/867,057 entitled “Tracing
Closures in a Callback Environment” filed 20 Apr. 2013. The
entire contents of both applications from which priority is
claimed are hereby expressly incorporated by reference.

BACKGROUND

Application tracing is one mechanism to understand and
monitor an application. Tracing is a mechanism to collect data
while the application executes. In some uses, application
tracing may be used for monitoring the ongoing performance
of an application. In other uses, application tracing may be
used by a developer to understand an application, identify any
problems, and improve the application.

SUMMARY

An automated tracing system may create wrapping func-
tions for each function in an application, including callback
functions that may be passed as arguments to or from a given
function. The wrapping function may include tracing data
which may be used to generate a topology of the application,
as well as other tracing data which may be used for perfor-
mance measurements. In many cases, the wrapping function
may be at least partially isomorphic with respect to the inner
function being wrapped.

A ftracing system may use an evaluation mechanism to
determine which functions to include or exclude during trac-
ing. The architecture may evaluate functions when functions
or groups of functions may be loaded for execution, as well as
each time a function may be encountered. The evaluation
mechanism may use whitelists, blacklists, and various
expressions to identify which functions to trace and which
functions to exclude. The evaluation mechanism may evalu-
ate an expression that may identify specific conditions under
which a function may be traced or not traced. The tracing
mechanism may create wrapping functions for each function,
including callback functions.

A tracing system may use different configurations for trac-
ing various functions in different manners. A configuration
may be a group of settings that may define which data ele-
ments to collect, as well as the manner in which the data may
be summarized, stored, and in some cases, displayed.
Example configurations may include debugging configura-
tion, performance optimization configuration, long term
monitoring configuration, and others. The tracing system
may be able to trace one group of functions with one configu-
ration, while tracing another group of functions in the same
application using a different configuration.

Real time analysis of tracing data may identify functions
for which tracing may be enhanced or reduced. A tracer that
generates function-level data may have an aggregator that
summarizes the data. Potential changes to tracing configura-
tion may be identified by analyzing the summarized data to
determine whether or not each function is being traced at a

10

15

20

25

30

35

40

45

50

55

60

65

2

level commensurate with that function’s impact to the sum-
marized data. Those functions with little significant contribu-
tion may have their tracing reduced, while those functions
with more significant contribution may have their tracing
enhanced. The analysis of the summarized data may be per-
formed in real time in some instances, causing a tracer to
change the data collected while an application executes.

A tracing system may be updated to include, exclude, or
modify tracing configurations for functions based on how a
user consumes tracing results. The user’s interactions with
graphical representations, inspections of data, and other inter-
actions may indicate which functions may be interesting and
which functions may not be. The user’s interactions may be
classified by use, such as during debugging, performance
testing, and ongoing monitoring, and multiple user’s interac-
tions with the same function, library, module, source code
file, or other groups of functions may be combined to predict
a user’s interest in a function.

Error logs, bug reports, and other databases identifying
problems with a tracer system may be mined to determine
how a tracer may interact with a given function, module, or
other group of functions. Based on such reports, a tracer may
be configured to avoid certain functions or to trace such
functions in a specific manner. In some cases, tracer may be
configured to limit tracing to certain parameters or with other
limitations to avoid any known conditions under which errors
occur.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings,

FIG. 1 is a diagram illustration of an embodiment showing
a method for tracing an application using tracing closures.

FIG. 2 is a diagram illustration of an embodiment showing
a network environment with devices that may trace an appli-
cation using tracing closures.

FIG. 3 is a flowchart illustration of an embodiment show-
ing a method for executing application functions with tracing
closures.

FIG. 4 is a diagram illustration of an embodiment showing
a system with a tracer list.

FIG. 5 is a diagram illustration of an embodiment showing
a system with a tracer list that may be updated.

FIG. 6 is a diagram illustration of an embodiment showing
a system with a user interaction analyzer.

FIG. 7 is a diagram illustration of an embodiment showing
a system with a tracing list manager.

FIG. 8 is a flowchart illustration of an embodiment show-
ing a method for using a tracer list in a compiled computing
environment.

FIG. 9 is a flowchart illustration of an embodiment show-
ing a method for using a tracer list in an interpreted computing
environment.

FIG. 10 is a flowchart illustration of an embodiment show-
ing a method for analyzing tracer data to adjust tracing levels.

FIG. 11 is a flowchart illustration of an embodiment show-
ing a method for analyzing user interactions to adjust tracing
configurations.

US 9,417,993 B2

3

FIG. 12 is a flowchart illustration of an embodiment show-
ing a method for error analysis to adjust tracing configura-
tions.

DETAILED DESCRIPTION

Automated Wrapping in a Callback Programming Envi-
ronment

An automated system may examine an application or com-
puter program to identify functions within the application. As
a function is identified, a tracing closure may be created that
adds a call to a tracing function. An application may be
recursively wrapped, function by function, with tracing clo-
sures that capture each function and gather performance and
topology information about the application.

In many programming languages and execution environ-
ments where callbacks may be used, functions may be passed
as arguments to and from a function, and functions may be
added as properties of functions, memory objects, or other
elements. In such environments, an automated system may
identify each function and wrap each function in a tracing
closure.

A tracing closure may include information that may be
useful for performance monitoring of an application. Such
information may include start and stop times for a function,
resources consumed by the function, work accomplished by
the function, garbage collection performed, or other param-
eters. The resources consumed by the function may be pro-
Cessor resources, memory resources, network resources,
peripheral device resources, or other resources. One example
of a performance metric may be the amount of work accom-
plished per unit time, which may reflect “busy-ness’ or effi-
ciency of a specific function.

A tracing closure may include caller information. Caller
information may include identifiers for a higher level function
that may have called the wrapped function. Such information
may retrieved from a call stack and may be added to tracing
information. A topology of an application may be created by
joining together the various functions invoked by the appli-
cation.

The tracing closure may include a projection of various
properties of the wrapped function. In many cases, a function
being wrapped may have various properties associated with
it, and by projecting the wrapped function’s properties to the
tracing wrapper, any downstream functions may properly
handle the wrapped function.

The automated tracing system may be used at runtime to
identify functions as those functions are called, wrap the
functions with a tracing closure, and collect tracing data while
the application executes. Such a system may be able to trace
every function or a subset of functions that may be of interest,
and may apply the tracing closures automatically without
causing a programmer to modify their code.

The automated tracing system may be implemented as a
library or code library. The automated tracing system may
examine an application at run time, apply the various tracer
closures, and cause the application to execute. The tracing
closures may gather information that may be passed to a
tracer manager, which may process the data and store the data
for visualizations or various analyses.

The automated tracing system may be implemented in any
language or execution environment where closures may be
constructed. Some languages may support closures explicitly,
while other languages may enable implied closures to be
implemented using various programming constructs.

10

15

20

25

30

35

40

45

50

55

60

65

4

Examples where the automated tracing system may be used
include Node.JS and other programming languages and
frameworks.

Tracer List for Automatically Controlling Tracer Behavior

An automated tracing system may evaluate which func-
tions to trace and which functions not to trace. Such a system
may trace a specific function under one set of conditions but
not trace the same function under a different set of conditions.
The evaluation mechanism may include whitelists, blacklists,
or arbitrary expressions that may be evaluated to determine
whether or not to trace a given instance of a function.

The tracing system may monitor each time a function may
be loaded prior to execution, as well as each time a function
may be called. An evaluation mechanism may be executed
prior to each function call to determine whether or not to trace
the given function. When the function may be selected for
tracing, the tracer may monitor the function’s execution and
gather data for the function. When the function may not be
selected for tracing, the function may be executed without the
tracer.

In many embodiments, the tracing operations may add
considerable overhead to the execution of an application. In
some instances, tracing may consume 2x, 5x, 10x, or even
more resources than the application being traced. Tracing
may also generate large amounts of data that may be difficult
to transmit or otherwise process. In one use scenario, a tracer
may be run without consuming an excess amount of resources
by eliminating a subset of functions from tracing.

In another use scenario, tracing may be applied to a subset
of functions that may be interesting to a user. For example, a
developer may wish to trace only a subset of an application on
which the developer may be currently working, but may not
wish to view tracing data from other portions of the applica-
tion for which the developer may not be responsible. In such
an example, the developer may specity that only the interest-
ing functions be traced, while excluding the portions that may
be uninteresting.

In still another use scenario, tracing may be turned on or
turned off based on external factors. For example, tracing may
be turned off or scaled back during periods of high loads or
when performance may be desired, but tracing may be
expanded during slower periods when more resources may be
available.

Multiple Tracer Configurations Applied on a Function-by-
Function Level

A tracer system may have multiple tracer configurations
that may be applied to different functions while tracing an
application. The tracer system may apply one configuration to
one function and a separate configuration to another function,
where the configurations define what data may be collected
and how those data may be processed, stored, and visually
represented.

The configurations may reflect different use cases for a
tracer. For example, one configuration may be a debugging
configuration, which may collect data useful for a program-
mer to determine how an application may function. A second
configuration may be a performance testing configuration,
which may collect a different set of data that may identify
bottlenecks or other performance factors in an application. A
third configuration may be a monitoring configuration, which
may collect still another set of data that may be used to
monitor the long term performance of a production applica-
tion.

In each case, a configuration may reflect a specific set of
data that may be collected. In some embodiments, a configu-
ration may also include mechanisms for summarizing, col-
lating, or otherwise processing the data into statistics repre-

US 9,417,993 B2

5

senting the data. A configuration may also include sets of
visualizations, tabular output, or other mechanisms through
which a user may consume and examine the results.

The tracer may be capable of applying different configu-
rations within a single application. For example, a tracer may
apply a detailed debugging configuration to a specific module
or group of functions that may be of particular interest, and
may apply a lightweight debugging configuration to the
remainder functions in the application. The results may
include detailed data and analysis of the functions of interest,
with other, more limited results from other functions.

Real Time Analysis of Tracer Summaries to Change Tracer
Behavior

A tracer system may evaluate functions for increased or
decreased tracing by evaluating the contributions of functions
to summary statistics. When functions have small effects on
certain statistics, the tracing of those functions may be mini-
mized or reduced. When functions have larger effects on
certain statistics, the tracing of those functions may be
enhanced or increased.

Many tracing systems may gather raw data and summarize
the raw data into statistics that represent the raw data. The
statistics may then be stored, processed, visualized, or other-
wise consumed, however the raw underlying data may be
discarded.

The collection of the raw underlying data can adversely
affect the performance of an application, causing an applica-
tion to run slowly or consume vast amounts of resources. In
some cases, tracing may add 5 to 10 times as many instruc-
tions to a single function, and fully instrumenting an applica-
tion may be prohibitively expensive.

The tracing system may use a mechanism to determine
which functions may be traced and the configuration with
which to trace each function. The mechanism may be updated
while the application is executing and while tracing the appli-
cation. Such a system may enable to tracer to change behavior
dynamically, while the application executes.

The tracing of a function may change in several different
manners. One change may be to increase or decrease the
amount of data collected for a particular function. For
example, a suite of data collected for a function may include
resource related data points, performance related data points,
memory object data points, or other types of data. By limiting
the amount of data collected for a particular function, the
tracing overhead for the function may be minimized.

Another change may be to increase or decrease the fre-
quency of data collection. Many tracers may collect and sum-
marize data on a periodic interval, and some embodiments
may limit certain data points to being collected on a sampling
basis that may be less than every interval.

When a function is undergoing a lightweight tracing level
and a determination is made to increase the tracing level, there
may be a lag time in collecting data for the function. During
a period of lightweight tracing, certain data items may not be
collected. There may be a period of time between a determi-
nation is made that more extensive tracing is indicated and
when the data may actually be collected.

User Interaction Analysis of Tracer Data for Configuring
an Application Tracer

A tracing system may analyze user interaction with tracer
data to classify a user’s interest in the data. Those data ele-
ments with low user interest may be traced as a reduced
tracing level, while those data elements with high user interest
may be traced at an enhanced tracing level.

The tracing system may gather user interactions over mul-
tiple types of visualizations or other analyses, and may also
aggregate multiple user’s interactions with trace data from the

20

25

40

45

50

55

6

same application as well as aggregating interactions with
multiple different applications.

The user interactions may infer the relative interest in a
specific function or group of functions. An interaction such as
collapsing a group of functions into a small representation in
a visualization may be one example of an interaction that
indicates a low user interest. Another interaction where a user
drills into a dataset to examine details of a group of functions
may indicate a high user interest.

When functions or groups of functions may be identified as
high or low level of interest, the tracing of the functions may
be adjusted to collect and summarize data accordingly. One
mechanism for communicating such identifiers may be a
tracer list or other database that may be updated after analysis
of user interactions.

The user’s level of interest in certain functions may change
based on a user’s use model of the data. A user who may be
debugging an application may examine certain functions in
detail, but may use the data in a different manner when doing
performance tuning or some other use of the data.

A tracing system may factor the user interactions by an
express or implied use of the data. In some cases, a user may
be explicitly asked to identify a category or classification that
reflects the user’s current activities. In other cases, the user’s
activities may be implied by the analyses performed, the
types of visualizations explored, or other activities.

Many embodiments may include a user classification that
may relate to a user’s goals or objectives for interacting with
the tracer data. The user classification may be general types of
uses of the data, such as for debugging, performance tuning,
orlong term monitoring. In some cases, the classification may
be uses of the data for a specific project or for a team or
company that may have specific types of interactions that may
apply to the project, team, company, or other group.

In some cases, the classification may be a specialized clas-
sification that may be learned or enhanced over time. A new
classification may be created by identifying user interactions
associated with the classification, then analyzing the user
interactions to identify preferences or interest levels for each
of the functions or groups of functions. An existing classifi-
cation may be enhanced by adding additional user interac-
tions within the classification, then performing additional
analysis.

The user preferences may be used as an initial configura-
tion of a tracer or analysis mechanism given a user’s classi-
fication. The initial configuration may serve as a starting point
from which a user may modify the tracer to enhance or reduce
activities regarding specific functions.

Error List and Bug Report Analysis for Configuring an
Application Tracer

A tracer system may be configured based on errors or bugs
that may have been encountered during previous tracer runs.
Various databases may contain error reports, bug reports, or
other abnormalities that may be analyzed to determine con-
ditions under which tracing may be suspended or performed
in a specific manner. In some cases, the tracing may be per-
formed in a reduced manner, while in other cases, the tracing
may not be traced at all for a specific function or group of
functions.

The tracer system may use various mechanisms to deter-
mine which function to trace and how to trace those functions.
One input to such a system may be errors, bug reports, and
other information that may be gathered during previous runs.
In general, an error or bug report may indicate conditions
under which the tracing operation may have failed, and trac-
ing may therefore be reduced or eliminated on subsequent
tracing attempts. Such a system may be one example of a

US 9,417,993 B2

7

system that may automatically learn or adapt as multiple uses
of the system are gathered and analyzed.

The tracer system may collect bugs or errors and may log
those events in a database. The database may be any form of
storage mechanism that may be queried when a function may
be encountered to determine whether to trace the functionand
how tracing may be deployed for the function.

In some cases, an error or bug report may indicate specific
features or conditions under which tracing may not operate as
intended. In such cases, the tracer system may still be able to
trace a function, but in a manner that may not invoke the error
condition. In some cases, the error or bug report may not have
sufficient information or may indicate that no tracing may be
appropriate for a given function.

The error or bug reports may identify a specific function or
group of functions for which tracing may have failed. The
group of functions may be defined in a module, file, library,
service, or other group of functions.

Throughout this specification and claims, the terms “pro-
filer”, “tracer”, and “instrumentation” are used interchange-
ably. These terms refer to any mechanism that may collect
data when an application is executed. In a classic definition,
“instrumentation” may refer to stubs, hooks, or other data
collection mechanisms that may be inserted into executable
code and thereby change the executable code, whereas “pro-
filer” or “tracer” may classically refer to data collection
mechanisms that may not change the executable code. The
use of any of these terms and their derivatives may implicate
or imply the other. For example, data collection using a
“tracer” may be performed using non-contact data collection
in the classic sense of a “tracer” as well as data collection
using the classic definition of “instrumentation” where the
executable code may be changed. Similarly, data collected
through “instrumentation” may include data collection using
non-contact data collection mechanisms.

Further, data collected through “profiling”, “tracing”, and
“instrumentation” may include any type of data that may be
collected, including performance related data such as pro-
cessing times, throughput, performance counters, and the
like. The collected data may include function names, param-
eters passed, memory object names and contents, messages
passed, message contents, registry settings, register contents,
error flags, interrupts, or any other parameter or other collect-
able data regarding an application being traced.

Throughout this specification and claims, the term “execu-
tion environment” may be used to refer to any type of sup-
porting software used to execute an application. An example
of an execution environment is an operating system. In some
illustrations, an “execution environment” may be shown
separately from an operating system. This may be to illustrate
a virtual machine, such as a process virtual machine, that
provides various support functions for an application. In other
embodiments, a virtual machine may be a system virtual
machine that may include its own internal operating system
and may simulate an entire computer system. Throughout this
specification and claims, the term “execution environment”
includes operating systems and other systems that may or
may not have readily identifiable “virtual machines” or other
supporting software.

Throughout this specification and claims, the term “appli-
cation” is used to refer to any combination of software and
hardware products that may perform a desired function. In
some cases, an application may be a single software program
that operates with a hardware platform. Some applications
may use multiple software components, each of which may
be written in a different language or may execute within
different hardware or software execution environments. In

5

10

15

20

25

30

35

40

45

50

55

60

65

8

some cases, such applications may be dispersed across mul-
tiple devices and may use software and hardware components
that may be connected by a network or other communications
system.

Throughout this specification, like reference numbers sig-
nify the same elements throughout the description of the
figures.

In the specification and claims, references to “a processor”
include multiple processors. In some cases, a process that
may be performed by “a processor” may be actually per-
formed by multiple processors on the same device or on
different devices. For the purposes of this specification and
claims, any reference to “a processor” shall include multiple
processors which may be on the same device or different
devices, unless expressly specified otherwise.

When elements are referred to as being “connected” or
“coupled,” the elements can be directly connected or coupled
together or one or more intervening elements may also be
present. In contrast, when elements are referred to as being
“directly connected” or “directly coupled,” there are no inter-
vening elements present.

The subject matter may be embodied as devices, systems,
methods, and/or computer program products. Accordingly,
some or all of the subject matter may be embodied in hard-
ware and/or in software (including firmware, resident soft-
ware, micro-code, state machines, gate arrays, etc.) Further-
more, the subject matter may take the form of a computer
program product on a computer-usable or computer-readable
storage medium having computer-usable or computer-read-
able program code embodied in the medium for use by or in
connection with an instruction execution system. In the con-
text of this document, a computer-usable or computer-read-
able medium may be any medium that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa-
ratus, or device.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. By way of
example, and not limitation, computer readable media may
comprise computer storage media and communication
media.

Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired
information and which can accessed by an instruction execu-
tion system. Note that the computer-usable or computer-read-
able medium could be paper or another suitable medium upon
which the program is printed, as the program can be electroni-
cally captured, via, for instance, optical scanning of the paper
or other medium, then compiled, interpreted, of otherwise
processed in a suitable manner, if necessary, and then stored
in a computer memory.

When the subject matter is embodied in the general context
of computer-executable instructions, the embodiment may
comprise program modules, executed by one or more sys-
tems, computers, or other devices. Generally, program mod-
ules include routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement

US 9,417,993 B2

9

particular abstract data types. Typically, the functionality of
the program modules may be combined or distributed as
desired in various embodiments.

FIG. 1 is a diagram of an embodiment 100 showing a
tracing method that may automatically wrap functions with
tracer closures, then executes the wrapped functions to gather
tracer data while an application executes.

Embodiment 100 illustrates a broad view of a method that
may be used to automatically instrument and execute an
application to collect tracer data. The tracer data may then be
processed to generate various analyses, such as visualizations
of the data.

The method of embodiment 100 may begin with an appli-
cation 102 and a routine that parses functions 104. As each
function may be encountered, a tracer closure 110 may encap-
sulate the function 108. The tracer closure 110 may include
functions for data capture 112 and data transmittal 114.

The wrapped function 108 may be executed 116, and the
data capture 112 and data transmitter 114 components may
transmit tracer data to a data gatherer 120. An analysis engine
122 may analyze the tracer data in real time or later to produce
various analysis, including visualizations 124 or other analy-
ses.

A tracer library 106 may include executable code that may
capture functions within the application 102 to apply the
tracer closure 110. The tracer closure 110 may be a mecha-
nism that encapsulates the function 108 so that data may be
gathered while the function 108 executes.

In atypical embodiment, the tracer closure 110 may gather
start time, end time, resource consumption data, objects
passed into and out from the function, and various other data.
The tracer closure 110 may have different data collection
options based on the types of analysis that may be performed.
In a monitoring system for a production application 102,
tracer closures 110 may have lightweight amounts of data
collection, while debugging and development the application
102 may have a large range of data that may be collected.

The tracer closure 110 may be created with a set of descrip-
tors that may be gathered when the function 108 is called. The
descriptors may include identifiers for the function 108 as
well as the calling function or other metadata about the func-
tion. The descriptors may be carried in the tracer closure 110
and be provided to the data gatherer 120.

The data capture 112 component may gather identification
information for each function. The identification information
may include references that may help a developer identify the
function being called, which may include a library name,
function name, or other indicator. In some embodiments, a
line number may be included to identify exactly where the
function call may have originated in a program. Such infor-
mation may be helpful in locating the program code for the
function call.

The function identifiers may include unique identifiers for
each instance of a function call. Some functions may be called
very frequently, and some embodiments may include a glo-
bally unique identification (GUID) or other identifier for each
independent instance of the function call. Other embodiments
may not include a unique identifier, yet may include various
other identifiers.

Call stack trace information may be included in some
embodiments by the data capture 112 component. The call
stack trace information may include identifiers for the func-
tion that called function 108. When the calling function meta-
data may be gathered by the tracer closure 110, an analyzer
may be able to link function calls together for various analy-
sis, including visualizations of the application’s components
that include the relationships between components.

10

15

20

25

30

35

40

45

50

55

60

65

10

The application 102 may be executed with the tracer library
106 in an execution environment 118. In some embodiments,
the execution environment 118 may be a virtual machine,
such as a process virtual machine or system virtual machine.
In some cases, the execution environment 118 may include a
framework that may process a subset of functions and may
work in conjunction with the application 102. For example, a
framework may process input/output requests or other func-
tions that may have high latency, and the framework may be
accessed using callbacks.

Callbacks may be executable code that may be passed as an
argument to other code, which may be expected to execute the
argument at a convenient time. An immediate invocation may
be performed in the case of a synchronous callback, while
asynchronous callbacks may be performed at some later time.
Many languages may support callbacks, including C, C++,
Pascal, JavaScript, Lua, Python, Perl, PHP, C#, Visual Basic,
Smalltalk, and other languages. In some cases, callbacks may
be expressly defined and implemented, while in other cases
callbacks may be simulated or have constructs that may
behave as callbacks. Callbacks may be implemented in object
oriented languages, functional languages, imperative lan-
guages, and other language types.

The function parser 104 may identify callbacks as func-
tions that may be wrapped using a tracer closure 110. The
callbacks may be passed to a function or returned by a func-
tion. The automated function parser 104 may detect any func-
tion as that function may be invoked, and then wrap the
function with a tracer closure.

In some cases, the automated function parser 104 may
encounter a function that already contains a tracer closure
110. In such cases, the automated function parser 104 may
determine that the tracer closure 110 has been applied and
may not add another closure.

Throughout this specification and claims, the term “wrap-
per”, “closure”, “encapsulation”, and similar terms are used
to describe a programming technique where executable code
in an application is monitored or managed. The executable
code may be an application function or other block of appli-
cation code. The wrapper or closure may be inserted between
the calling function and the called function, and may itself
call the called function. When inserted in an application, a
tracer closure may perform some data collection at the start of
a function and additional data collection when the function
ends.

As a wrapper function, a tracer closure may be able to
detect inputs and output of the wrapped function, as well as
calls to other functions, normal or abnormal exits from the
function, input values, output values, changes to state, or
other interactions or behaviors of the wrapped function. Each
of these types of data may be collected in various embodi-
ments.

In one example of a debugging embodiment, the tracer
closures may be configured to capture operations or interac-
tions with a specific data type or data object. Each type the
identified data objects may be accessed or changed, the tracer
closures may capture the event and store the event for pro-
cessing. In some cases, a flag or condition may be set that may
pause the operation of the application so that a programmer
may be able to investigate or query other data objects or check
various states of the application.

The tracer closures 110 may generate a large amount of
tracing data in some cases. Some embodiments may pre-
process or aggregate the collected data prior to transmitting
the data to a data gatherer. For example, an embodiment may
use various time series techniques to maintain running aver-
ages or other summaries and statistics of the data, then trans-

US 9,417,993 B2

11

mit the summaries and statistics to a data gatherer 120. In
another example, an embodiment may maintain counters that
count various events and transmit the counter values at spe-
cific intervals to the data gatherer.

The tracer closures 110 may be applied to a subset of
functions in some embodiments. Such embodiments may
have a configuration file that may identify specific functions,
types of functions, classes of functions, or other definitions of
functions that may be included or excluded. Some embodi-
ments may have heuristics or conditional expressions that
may be evaluated to identify functions that may be included or
excluded in the analysis.

FIG. 2 is a diagram of an embodiment 200 showing com-
ponents that may trace an application using tracer closures.
Embodiment 200 contains a device 202 that may be a single
device in which tracing may occur, as well as several devices
that may perform tracing using remote data collection and
analysis.

A single device architecture may gather tracer data, ana-
lyze the data, and graphically display the data or perform
bottleneck detection.

A multiple device architecture may divide different com-
ponents of the data gathering and analysis functions over
different devices. The multiple device architecture may be
one way to deliver complex tracing services without having to
install and maintain all of the various tracing components on
a single system.

The diagram of FIG. 2 illustrates functional components of
a system. In some cases, the component may be a hardware
component, a software component, or a combination of hard-
ware and software. Some of the components may be applica-
tion level software, while other components may be execution
environment level components. In some cases, the connection
of'one component to another may be a close connection where
two or more components are operating on a single hardware
platform. In other cases, the connections may be made over
network connections spanning long distances. Each embodi-
ment may use different hardware, software, and interconnec-
tion architectures to achieve the functions described.

Embodiment 200 illustrates a device 202 that may have a
hardware platform 204 and various software components.
The device 202 as illustrated represents a conventional com-
puting device, although other embodiments may have differ-
ent configurations, architectures, or components.

In many embodiments, the device 202 may be a server
computer. In some embodiments, the device 202 may still
also be a desktop computer, laptop computer, netbook com-
puter, tablet or slate computer, wireless handset, cellular tele-
phone, game console or any other type of computing device.

The hardware platform 204 may include a processor 208,
random access memory 210, and nonvolatile storage 212. The
hardware platform 204 may also include a user interface 214
and network interface 216.

The random access memory 210 may be storage that con-
tains data objects and executable code that can be quickly
accessed by the processors 208. In many embodiments, the
random access memory 210 may have a high-speed bus con-
necting the memory 210 to the processors 208.

The nonvolatile storage 212 may be storage that persists
after the device 202 is shut down. The nonvolatile storage 212
may be any type of storage device, including hard disk, solid
state memory devices, magnetic tape, optical storage, or other
type of storage. The nonvolatile storage 212 may be read only
or read/write capable. In some embodiments, the nonvolatile
storage 212 may be cloud based, network storage, or other
storage that may be accessed over a network connection.

10

15

20

25

30

35

40

45

50

55

60

65

12

The user interface 214 may be any type of hardware
capable of displaying output and receiving input from a user.
In many cases, the output display may be a graphical display
monitor, although output devices may include lights and other
visual output, audio output, kinetic actuator output, as well as
other output devices. Conventional input devices may include
keyboards and pointing devices such as a mouse, stylus,
trackball, or other pointing device. Other input devices may
include various sensors, including biometric input devices,
audio and video input devices, and other sensors.

The network interface 216 may be any type of connection
to another computer. In many embodiments, the network
interface 216 may be a wired Ethernet connection. Other
embodiments may include wired or wireless connections
over various communication protocols.

The software components 206 may include an operating
system 218 on which various software components and ser-
vices may operate. An operating system may provide an
abstraction layer between executing routines and the hard-
ware components 204, and may include various routines and
functions that communicate directly with various hardware
components.

An execution system 220 may manage the execution of an
application 222, which may interact with various libraries
224, including a tracer library 226. The execution environ-
ment 220 may be a defined environment in which the appli-
cation 222 may be executed, an example of which may be a
virtual machine, including a process virtual machine or sys-
tem virtual machine. In another example, an execution envi-
ronment may be an integrated development environment that
may have an editor that displays and edits the code, a com-
piler, various debugger tools, and other components used by
programmers. In some embodiments, the execution system
220 may be an ad hoc collection of various components
within an operating system 218 that may facilitate execution
of the application 222.

In some embodiments, the execution environment 222 may
include components such as an interpreter 228 and just in time
compiler 230. Some environments may have an interpreter
228 which may process source code or intermediate code to
generate machine instructions. In some cases, an interpreter
228 may generate intermediate code that may be further com-
piled. A just in time compiler 230 may be a component that
creates machine code at runtime from source code or inter-
mediate code. Still other embodiments may have a compiler
that creates machine code from source code or intermediate
code, but may do so some time before execution.

When the application 222 may be run with the tracer library
226, functions within the application 222 may be wrapped
with a tracer closure, and the tracer closure may collect data
and send the data to a data gatherer 232, which may store the
tracer data 234. An analyzer 236 may process the tracer data
234 into visualizations, reports, alerts, or other forms.

The example of device 202 and more particularly the com-
ponents illustrated in the execution environment 220 may
represent an embodiment where all of the tracing, data col-
lection, and analysis may be performed by a single device.
Other embodiments may have multiple devices that may per-
form subsets of the tracing, data collection, and analysis
functions.

Such devices may be connected over a network 238. In one
embodiment, a data gathering system 240 and an analyzer
system 248 may perform data collection and analysis ser-
vices, respectively.

The data gathering system 240 may operate on a hardware
platform 242, which may be similar to the hardware platform
204. A data gatherer component 244 may collect tracer data

US 9,417,993 B2

13

246 from one or many devices 202 where tracer closures are
being applied. The analyzer system 248 may have a hardware
platform 250 which may be similar to the hardware platform
204, on which an analyzer 252 and renderer 254 may execute.

In some embodiments, a single data gatherer system 240
may collect data from multiple devices on which applications
may be traced. One such embodiment may be where the data
gathering and analysis may be performed as a service to
multiple clients. In such an embodiment, each client device
may have an application 222 that may be executed with a
tracer library 226, and each tracer closure may transmit data
to a data gatherer system 240, which may store tracer data 246
collected from multiple client devices.

Some applications may execute across multiple devices. In
such a case, each device may create tracer closures that may
transmit tracer data to a centralized data gatherer 244. Insome
such embodiments, the tracer data may have synchronization
information or other data that may allow the data gatherer 244
or the analyzer system 248 to correlate or otherwise relate
data from multiple sources together. Such embodiments may
enable reports, visualizations, and other analyses that may
incorporate data from multiple client devices into a single
view of an application or larger, multi-device system. In such
embodiments, a device name or other identifier may be asso-
ciated with each data element that may be stored in the tracer
data 246.

An example of a multiple device embodiment may be an
application that processes workloads over multiple devices. A
high performance computing cluster with message passing is
one example of such a system, where the application may be
distributed across multiple processors and multiple devices.
A computing cluster with load balancing capabilities may be
another example of a multi-device implementation of an
application. Multiple devices may be used to process work-
loads in series, such that work may be passed from one device
to another in sequence. Multiple devices may also be config-
ured to process workloads in parallel, where independent
workloads may be processed separately by similar devices.

FIG. 3 is a flowchart illustration of an embodiment 300
showing a method for executing an application by wrapping
functions. The operations of embodiment 300 illustrates the
operations that may be contained in a tracer library and may
be executed with an application.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or terminol-
ogy to accomplish similar functions. In some embodiments,
various operations or set of operations may be performed in
parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to
illustrate some principles of operations in a simplified form.

Embodiment 300 illustrates a method that may identify
each function within an application, then apply a tracer clo-
sure to wrap the function. At the time a tracer closure may be
created, some data may be gathered about the context of the
wrapped function, and data may also be gathered when the
function begins and ends. Some embodiments may collect
data at other points during the function execution.

An application may be received in block 302, and the
application may begin execution with the tracing library in
block 304.

A function may be identified in block 306 as being ready
for execution. If the function has not yet been wrapped with a
tracer closure in block 308, a tracer closure may be generated
beginning in block 310.

A function identifier may be generated in block 310. The
function identifier may include a human readable name for
the function. For example, a function name as defined in

10

15

20

25

30

35

40

45

50

55

60

65

14

source code may be used, and such a name may include a
library name or other identifiers.

In many embodiments, an analyzer may attempt to concat-
enate or summaries calls to a specific function or group of
functions. In such embodiments, the function identifiers may
include names that may be common to each instance of the
function called. A typical embodiment may include a text
name taken from source code.

In some embodiments, the identifier may include unique
identifiers for individual instances of a function. Such
embodiments may store the unique identifiers as separate
parameters within a tracer closure. The unique identifiers may
be created by using incremental counters, globally unique
identifiers (GUID), or other techniques to differentiate one
instance of a function from another.

Such embodiments may enable various analyses that may
track individual instances of certain functions through an
application. Examples of such analyses may include bottle-
neck detection, tracing of individual workloads, or other
analyses.

A lookup in a trace stack may be performed in block 312 to
identify a calling function. When a calling function may be
already wrapped with its own tracing closure, such a lookup
may identify the calling function as one additional level up in
the call stack. Such a situation may be useful in that the calling
function identifier may refer to the calling function within the
application, as opposed to the calling function being identi-
fied as a tracing closure.

The tracer closure may be created in block 314. The tracing
closure may include some state that may include the identi-
fiers for the function, the calling function, and other informa-
tion. Such state may be passed to a data gatherer when the
tracing closure collects and transmits tracing data.

After creating the tracing closure, the process may return to
block 306. Now that the function is wrapped in block 308,
data may be collected at the start of the function’s execution
in block 316.

The data collected in block 316 may include different
information in different embodiments. In many embodi-
ments, the data collected at the start of the function execution
may include a timestamp. Some embodiments may also
include parameters passed to the function, global variables, or
other memory objects. Some embodiments may capture sys-
tem state when the function begins. Such system state may
include current processor load, network activity, or any other
type of state that may exist when the function begins execut-
ing.

Insome embodiments, a tracer closure may transmit data to
a data collector at each stage where data may be collected. In
the example of embodiment 300, data may be transmitted at
the completion of a function. However, some embodiments
may also transmit data to a data collector as part of block 316.
Such data may be transmitted in parallel to beginning func-
tion execution in block 318 or before the function begins.

The function may begin executing in block 318. The func-
tion may be the actual executable code of the application that
was wrapped with a tracer closure. As the function executes,
if any function calls are encountered in block 320, the process
may loop to block 306 to wrap the function and begin execut-
ing the new function. This loop may be performed multiple
times recursively, with each newly encountered function
being wrapped and added to the call stack.

The functions encountered in block 320 may include call-
back functions, which may be functions passed to the func-
tion being executed or returned by the function being
executed.

US 9,417,993 B2

15

When the wrapped function finishes execution, a set of data
may be collected. The set of data may include a timestamp
indicating when the function completed. Some embodiments
may also include counters or other indicators of resources
consumed by the function, data passed to or from the func-
tion, state of various memory objects, or any other data.

The data may be passed to a data collector in block 324. In
some embodiments, various pre-processing or summariza-
tion may be performed prior to transmitting the data to a
collector.

The data may be passed to a data collector that may be
located on a remote device. In such a case, a tracer closure
may cause a data transmission to occur across a network to a
data gatherer. Some embodiments may include a local aggre-
gator that may gather output from multiple tracer closures and
transmit a group of datasets to a data gatherer over a network.

If the current function has been called from another func-
tion in block 326, the process may return to block 320 to
continue execution of the calling function. The loop back to
block 320 may be encountered for each calling function in a
call stack at some point during execution.

When there is no calling function in block 326, the process
may return to block 306 to begin executing another function
in the application.

FIG. 4 is a diagram illustration of an embodiment 400
showing a system with a tracer list. The system may use a
tracer list to include or exclude functions for tracing, and may
also cause different levels of tracing to be implemented. The
components illustrated may be hardware components, soft-
ware components operating on hardware components, or
some other configuration.

Embodiment 400 is a high level view of a system in which
applications may be traced with a tracer, and the tracer may be
configured with a tracer list. The tracer list may define how
each function may be traced, and may cause some functions
to be traced while other functions not to be traced.

The tracer list may serve as a mechanism for configuring
the tracer. The tracer list may be configured for different types
of uses, such as debugging, performance testing, and long
term monitoring.

An application may be executed by processing executable
code 402. An execution pointer 404 may identify the portion
of code to execute. As a function is encountered, a look up
may be performed against a tracer list 406. The look up may
determine if and how to trace the function.

The tracer list 406 may be any type of database in which
may be stored descriptors of functions to trace, and in some
cases the type of tracing to perform. In many cases, the
database may be implemented as a list, with an expression
identifying a function. Other data structures may be used in
other embodiments.

For the purposes of this specification and claims, the term
“tracer list” may include any type of database in which func-
tion descriptions may be stored. The term “tracer list” is
intended to include list data structures as well as any other
type of data structure to express the concepts described as
stored in the tracer list.

The tracer list 406 may include whitelist 408 and blacklist
410 entries. The whitelist 408 and blacklist 410 may describe
functions to include and exclude, respectively, for tracing.
Different embodiments may implement the whitelist and
blacklist concepts differently. Some embodiments may use
only whitelists, while other embodiments may use only
blacklists, and still other embodiments may deploy both
whitelists and blacklists.

When deployed alone, a whitelist or blacklist may define
the functions to include or exclude, respectively, when trac-

10

20

25

30

35

40

45

55

60

65

16

ing. In a whitelist version of such an embodiment, every
function matching a whitelist may be traced, while every
function not found in the whitelist may not be traced. Simi-
larly in a blacklist version, every function defined in the
blacklist would be excluded from tracing, and all other func-
tions would be included.

When deployed together, either a whitelist or blacklist may
be treated as having priority over the other list or overriding
the other list. For example, a whitelist may be deployed as
listing all functions to trace, but a blacklist may override the
whitelist to remove a function that may be otherwise permit-
ted to be traced. In the converse example, a blacklist may
identify those functions to remove from tracing, but a func-
tion identified in a whitelist may add those functions back to
the set of tracable functions.

The tracer list 406 may include any type of definition or
expression that may identify a function. Many embodiments
may define functions as members in a group. The group may
be a file, module, library, service, or other group definition.

For the purposes of this specification and claims, the con-
cept of identifying a function may be performed through any
mechanism by which a function may be identified. In some
cases, a function may be identified by specifically identifying
the function name. In some cases, a function may be identified
by identifying a group to which the function may be a mem-
ber. For example, a function may be identified by a module,
library, service, or file from which the function originated.

In some cases, a function may be identified through an
expression that may be evaluated at runtime or whenever the
function may be identified. The expression may include vari-
ous external data sources, comparing different memory
objects, or other components of an expression. In a simple
example, an expression may identify a function having a
module name and being traced during a specific time period
and when a resource, such as free memory, is below a speci-
fied level. In such an example, various external data factors,
such as time, performance factors, or other conditions may be
satisfied prior to including or excluding the function for trac-
ing.

The tracer list 406 may include various configurations 412.
The configurations 412 may define how a function may be
traced, and may be considered a tracing ‘level’. In some cases,
the various configurations may be arranged in a high to low
level, while in other cases, the configurations may not lend
themselves to a linear or sequential arrangement.

In the example of embodiment 400, the configurations 412
may include debugging level 426, performance level 428, and
monitoring level 430 configurations. A debugging level trac-
ing may be used to collect detailed information that may be
used to help a developer understand an application at a low
level. In some cases, a debugging level trace may include
details that may help the developer determine if an applica-
tion is performing at its most basic level. In many cases, a
debugging level tracing operation may consume many times
the resources of the underlying application, causing the appli-
cation’s performance to be adversely affected.

A performance level tracing may collect data that may be
used to identify and correct performance problems in an
application. A performance level tracing may use fewer
resources than debugging level tracing, so that the tracing
results may better reflect the application’s performance char-
acteristics. A performance level tracing may differ from a
debugging level tracing in the data collected and how the data
are summarized. A debugging level tracing may collect
memory object values and parameters passed to a function,

US 9,417,993 B2

17

while a performance level tracing may not collect such values
and may, instead, collect data representative of performance
type metrics.

A monitoring level tracing may be a configuration that may
be used to monitor the long term operation of an application.
A monitoring level tracing may use different monitored data
and provide different summaries of such data than other trac-
ing levels. In a typical use, a monitoring level tracing may be
used by an administrator to determine the health of an appli-
cation in production, as opposed to the use of a debugging
level or performance level tracing, which may be used by a
developer prior to launching an application in production.

The examples of the various configurations 412 are not
meant to be inclusive but may represent various uses of a
tracer file and configurations that may be applied to a tracer
file.

A function may be traced by using a wrapper function 414,
which may be executed with the traced function 416. The
wrapper may provide hooks or other connections such that a
tracer 418 may collect tracer data 422. The tracer data 422
may be used by various analyses and visualizations 424.

The tracer 418 may operate with a configuration 420,
which may define how the tracer 418 may collect and sum-
marize data. The configuration 420 may include the data
elements to collect, and in some cases, how the data may be
processed for downstream use. The data elements may
include any raw data that may be measured or collected while
observing or monitoring a function. The subsequent process-
ing may include summarizing, analyzing, generating statis-
tics, formatting, storing, or any other operation that may be
performed on the data.

FIG. 5 is a diagram illustration of an embodiment 500
showing a system with mechanisms to update a tracer list.
Embodiment 500 illustrates the general flow and various
components that may be implemented to update a tracer list.
The components illustrated may be hardware components,
software components operating on hardware components, or
some other configuration.

Embodiment 500 illustrates a system that may feedback
information into a tracer list 510 from various sources to
cause a tracer to operate in different manners. The feedback
loop may gather information in real time, through offline
analysis, or through user interactions with the tracer results.
The feedback information may increase, decrease, or other-
wise change the tracer operations with respect to a single
function or group of functions. In some cases, the information
fed back to the tracer list 510 may cause tracing to be elimi-
nated for certain functions.

An execution environment 502 may execute an application
504. The execution of application 504 may be represented by
an execution pointer 506, which may identify the current line
or function being executed.

The execution environment 502 is illustrated as executing
the application 504 in an instruction by instruction manner. In
some cases, the application 504 may be compiled prior to
execution, using a traditional compiler or a just in time com-
piler. Some execution environments may use interpreted code
or may execute machine code. Some execution environments
may use other mechanisms for executing an application.

A tracer library 508 may be a software component that has
a data gatherer 536 and summarizer 538. The gatherer 536
may be a tracer component that gathers raw data by observing
the application 504. The raw data may be performance obser-
vations, resource consumption, elapsed time, input and out-
put data values, memory object contents, or any other type of
data that may be gathered at the time a function is executed.

20

40

45

50

55

18

The summarizer 538 may prepare the raw data for down-
stream use. In some cases, the summarizer 538 may aggregate
much of the raw data. In one such example, the summarizer
538 may count how many instances were called during a
period of time for a particular function. The downstream
tracer results 522 may contain only the summarized data, and
the raw data may be discarded.

In many embodiments, the amount of data collected by a
gatherer 536 may be much more data than may be processed
by the downstream components, especially when the data are
continually generated while executing the application 504. In
such a case, the summarizer 538 may perform aninitial analy-
sis of the data to generate statistics that may represent the
underlying data. The statistics may be further analyzed, sum-
marized, and represented by various visualizations 532 and
other analysis that may be performed.

As each function may be encountered by the tracer, a query
may be made to a tracer list 510 to determine whether or not
to trace a function, and how to trace a function when so
selected. The tracer list 510 as illustrated in embodiment 500
may represent merely one example of a data structure that
may contain information sufficient to determine if and how to
trace a function.

The tracer list 510 may contain entries comprising a func-
tion expression 512 and a tracing configuration 514 to apply
to the selected functions. In the example of tracer list 510, the
tracer list 510 may serve as a whitelist, where each function
identified in the tracer list 510 may be traced only when the
function may be found in the tracer list 510. In some embodi-
ments, a default for functions not found in the tracer list 510
may be to not trace those functions.

The tracer list 510 contains several example entries that
may illustrate different manners of identifying a function. In
entry 516, a function may be identified by a module name.
Such an entry may apply the same level of tracing to all
functions represented by the group of functions identified as
module:foo. In the case of entry 516, the tracing configuration
514 applied to such functions is a monitoring level configu-
ration. In entry 518, functions belonging to file:bar may have
a performance level tracing applied. Entry 520 may include
an expression that may be evaluated at runtime to select
functions named X but may be traced when memory object
Y=0. When such a condition may be satisfied, the function X
may be traced at a debug level.

The example of tracer list 510 is merely one example of
how different expressions may be used to identify functions
for tracing, then to apply different levels of tracing to specific
functions. The example of tracer list 510 may have an implied
orexplicit hierarchy when applying function expressions. For
example, one implementation may allow the last expression
to override previous expressions. In the example, assume that
function X is found in module:foo. In the entry 516, function
X would be assigned tracing at a monitoring level, but in entry
520, function X’s tracing would be overridden to a debug
level when object Y=0.

The tracer results 522 may be analyzed in several different
manners to update or change the tracer list 510.

A real time analyzer 524 may identify functions for which
atracing configuration may not be appropriate, and may relay
changes to a tracer list manager 526, which may send updates
528 to the tracer list 510. The changes identified by a real time
analyzer 524 may increase the tracing level of a function that
may be underrepresented or may decrease the tracing level of
a function that may be overrepresented.

An underrepresented function may be one in which the
effects of the function may not match the data being collected
for the function. A function that has large effects on one or

US 9,417,993 B2

19

more performance or other metrics may also have a larger
amount of data collected, whereas functions with little effects
on various metrics may have little data collected.

Such a situation may be relevant when a relatively small
number of functions contribute to a substantial portion of a
metric, while a large number of functions may contribute little
or no effects to a metric. In such a situation, a reduction in the
monitoring and tracing of the large number of functions with
little effect may substantially reduce the tracing overhead.
Such tracing overhead may then be applied to increasing
detailed tracing of the functions that have larger effects.

The real time analyzer 524 may operate in a tracing system
where raw data are collected and then summarized for analy-
sis and storage. Many tracing systems may perform some
initial summarization as part of the data collection operation.
For example, a tracing system may gather raw data and pro-
vide data summaries at periodic intervals, such as every sec-
ond or every minute. In some cases, the real time analyzer 524
may execute on the same hardware platform as the execution
environment 502 and as a component of the tracer library 508.

A feedback loop of a real time analyzer 524 may update the
tracer list 510 in real time or near-real time. The effects of the
real time analyzer 524 may change the tracing levels and thus
the collected data over the course of a tracing run, which may
last merely seconds or for hours, days, or even months.

The real time analyzer 524 may perform an analysis within
each update time period. In such embodiments, the real time
analyzer 524 may operate as part of a tracer application and
may execute on a host device that may also execute the
application under test.

In many cases, a real time analyzer 524 may be a light-
weight analysis that may use a threshold analysis of a par-
ticular metric to increase or decrease tracing levels for a
function or group of functions. The threshold analysis may
increase tracing when the function contributes more than a
predefined percentage to a particular metric, then decrease
tracing when the function contributes less than a second per-
centage.

For example, when a function contributes more than 1% to
ametric relating to a resource consumption, such as processor
consumption or memory consumption, the tracing level of the
function may be increased. When the same function falls to
below 0.5% contribution to the same metric, the tracing level
may be decrease. In the example, the difference between the
threshold to increase tracing and the second threshold to
decrease tracing may be one mechanism for introducing hys-
teresis, which may avoid over-changing the tracer levels for
marginal situations. In the example, thresholds of 1% and
0.5% were used solely as examples of possible threshold
percentages. Other embodiments may use 0.1%, 0.2%, 2%,
5%, 10%, or other percentages.

An offline analyzer 530 may analyze the tracer results 522
to generate recommendations from which a tracer list man-
ager 526 may create updates 528 to the tracer list 510. The
offline analyzer 530 may operate on a separate hardware
platform than the tracer 508. In some cases, the offline ana-
lyzer 530 may execute on the same hardware platform as the
tracer 508.

In many cases, the offline analyzer 530 may operate with-
out the presumption that the analysis results may be con-
sumed in real time. As such, the offline analyzer 530 may be
able to execute more detailed or complicated algorithms than
may be expected in a real time analyzer 524.

The offline analyzer 530 may analyze tracer results 522
from multiple tracer runs. The tracer results 522 may be from
the same application 504, different versions ofthe application
504, or from multiple applications that may share common

10

15

20

25

30

35

40

45

50

55

60

65

20

functions. The offline analyzer 530 may examine historical
data to identify which functions may be more statistically
significant than others, and may establish recommendations
for tracing levels that may be applied to those functions.

The results from the offline analyzer 530 may be more
general than results that may be expected from a real time
analyzer 524, in that the offline analyzer 530 may provide a
general guidance or recommendations for setting initial trac-
ing level. The recommendations may be used as an initial
starting point for tracing, and in some cases, a real time
analyzer 524 may further modify the tracing levels from the
recommendations for a specific tracing run.

The offline analyzer 530 and the real time analyzer 524
may identify settings for individual functions or may identify
settings for groups of functions. Some analyzers may exam-
ine all or a sample of functions in a file, module, library,
service, or other group of functions, and may apply the same
settings to all of the functions in the group. In some cases,
common settings across multiple functions may be useful
when certain visualizations or analyses may compare func-
tions to each other, or may combine functions together to
generate aggregated statistics.

In some cases, the real time analyzer 524 and offline ana-
lyzer 530 may identify particular settings on a function-by-
function basis. Such settings may identify certain settings that
may optimize how a tracer handles each function. In some
cases, the analyzers may determine certain conditions or set-
tings that may avoid error conditions or problems that may
have occurred in previous tracer runs.

A user interaction analyzer 534 may analyze how a user
interacts with visualizations 532 or other representations of
the tracer results 522. The results of the analysis may identify
which functions or groups of functions are of interest to a user.
The user’s behavior with certain functions may identify
which functions are highly viewed and analyzed, and which
are not. Those functions which are not viewed often or at all
may have tracing disabled or performed at a very minimal
amount.

FIG. 6 is a diagram illustration of an embodiment 600
showing a system with mechanisms to update a tracer list
based on user interactions. Embodiment 600 illustrates the
general flow and various components that may be imple-
mented to update a tracer list. The components illustrated
may be hardware components, software components operat-
ing on hardware components, or some other configuration.

Embodiment 600 illustrates a system that may feedback
information into a tracer list 614 and a database of tracer
configurations 620 based on user interactions with tracer data.
The feedback loop may gather information in real time,
through offline analysis, or through user interactions with the
tracer results. The feedback information may increase,
decrease, or otherwise change the tracer operations with
respect to a single function or group of functions. In some
cases, the information fed back to the tracer list 614 and tracer
configurations 620 may cause tracing to be eliminated for
certain functions.

An execution environment 602 may execute an application
604. The execution of application 604 may be represented by
an execution pointer 606, which may identify the current line
or function being executed.

The execution environment 602 is illustrated as executing
the application 604 in an instruction by instruction manner. In
some cases, the application 604 may be compiled prior to
execution, using a traditional compiler or a just in time com-
piler. Some execution environments may use interpreted code
or may execute machine code. Some execution environments
may use other mechanisms for executing an application.

US 9,417,993 B2

21

A tracer library 608 may be a software component that has
a data gatherer 610 and summarizer 612. The gatherer 610
may be a tracer component that gathers raw data by observing
the application 604. The raw data may be performance obser-
vations, resource consumption, elapsed time, input and out-
put data values, memory object contents, or any other type of
data that may be gathered at the time a function is executed.

The summarizer 612 may prepare the raw data for down-
stream use. In some cases, the summarizer 612 may aggregate
much of the raw data. In one such example, the summarizer
612 may count how many instances were called during a
period of time for a particular function. The downstream
tracer results 634 may contain only the summarized data, and
the raw data may be discarded.

In many embodiments, the amount of data collected by a
gatherer 610 may be much more data than may be processed
by the downstream components, especially when the data are
continually generated while executing the application 604. In
such a case, the summarizer 612 may perform aninitial analy-
sis of the data to generate statistics that may represent the
underlying data. The statistics may undergo further analyses
636, data summaries 638, and represented by various visual-
izations 640 as well as other analysis.

As each function may be encountered by the tracer, a query
may be made to a tracer list 614 to determine whether or not
to trace a function, and how to trace a function when so
selected. The tracer list 614 as illustrated in embodiment 600
may represent merely one example of a data structure that
may contain information sufficient to determine if and how to
trace a function.

The tracer list 614 may contain entries comprising a func-
tion expression 616 and a tracing configuration 618 to apply
to the selected functions. The tracing configuration 618 may
relate to a database of tracing configurations 620. Each of the
tracing configurations 620 may be a predefined set of settings
that may cause the tracer to gather certain data and summarize
the data in a particular manner.

The configurations may define categories of data to collect
or not to collect. Some embodiments may apply multiple
configurations to a given situation, such that each configura-
tion may add or remove elements to a tracer behavior. In one
such embodiment, a base configuration may provide default
settings, and each subsequently applied configuration may
change the tracer behavior in more specific and detailed ways
to create a customized configuration to suit a particular use
case. Other embodiments may have different ways to com-
bine multiple configurations to define a desired tracer behav-
ior.

Some configurations may collect data items that help track
process flow through an application. For example, a tracer
may capture data objects passed to and from a function. Such
a tracer configuration may collect enough data to follow a
memory object or process flow through several functions, one
after the other. Such a tracer configuration may not gather
some of the resource consumption data points mentioned
above. The debugging configuration 622 may be an example
of such a configuration.

Some configurations may include details about perfor-
mance, such as resource usage and other metrics from which
efficiency or other performance metrics may be derived. Such
configurations may include details about memory, processor,
network, and other resource consumption. In an example of
memory consumption, the amount of memory allocated to a
function may be captured, along with the garbage collection
performed, cache misses, and similar metrics. The perfor-
mance configuration 624 may be an example of such a con-
figuration.

10

15

20

25

30

35

40

45

50

55

60

65

22

Other configurations may collect data that may be useful as
a monitoring configuration 626. A monitoring configuration
626 may collect data items that may reflect the general per-
formance of an application, as may be used by an adminis-
trator to manage a production application. Such a configura-
tion may collect a different set of data objects and measure
different performance related objects than other configura-
tions.

Some configurations may be designed or customized for
specific use cases. For example, a project-specific configura-
tion 628 may be defined for a certain use case. Such a con-
figuration may collect additional items or perform analyses
that may be tailored to a given project, and may not collect
other data or perform other analyses that may not apply to the
project.

A personal preferences configuration 630 may contain a set
of data objects and analyses that may apply to a specific user.
Team preferences configuration 632 and company prefer-
ences configuration 634 may similarly define preferences that
may be defined on a user group or company-wide level.

The tracer results 634 may be used to generate various
analyses 636, data summaries 638, and visualizations 640. A
user interaction analyzer 648 may analyze the user interac-
tions 642 along with a user profile 644 to generate updates
650 that may be applied to configurations 620 and updates
652 to the tracer list 614.

The user interaction 642 may be any interaction that may
be captured. Some embodiments may be able to track high
level interactions, such as which visualizations were viewed
or which analyses performed. Other embodiments may be
able to identify which data objects were viewed or manipu-
lated within an analysis, summary, or visualization.

The more detailed the user interactions 642 may be, the
more specific updates may be created by the user interaction
analyzer 648. When the user interactions 642 can identify
specific functions of interest to the user, the user interaction
analyzer 648 may make changes to either the configurations
620 or tracer list 614.

Updates 650 made to the configurations 620 may include
definitions for what data to collect and how to process the
data. The updates 652 to the tracer list 614 may identify the
functions, modules, libraries, or other groups of functions to
which a configuration may be applied.

In general, the configurations 620 may define various use
scenarios for the tracer. The use scenario may be identified in
part by auser mode 646, which may be an express or implied
set of tasks that a user may be performing. In many cases, a
user may transition from one set of tasks to another and back.
For example, a developer may begin using a tracer in a debug-
ging mode when writing an application, then transition to
performance tuning, and to monitoring mode once the appli-
cation enters production. The developer may switch back and
forth between the various modes as bugs may be uncovered
and fixed, or when new features may be added and tested.

The user mode 646 may be implied by examining the types
of analyses 636, data summaries 638, and visualizations 640
that the user happens to activate. In many cases, certain visu-
alizations, analyses, and summaries may be targeted to a user
mode, and in such cases, the user mode 646 may be inferred
from the user actions.

The user mode 646 may be expressly defined by the user in
some cases. Some embodiments may have a user learning
mode, where the user interaction analyzer 648 may be turned
onto track auser’s actions and create a configuration 620 and
sometimes a tracer list 614 that may map to a user’s use of the
tracer results 634. In such embodiments, the user may
expressly define a user mode 646, then interact with the tracer

US 9,417,993 B2

23

results 634 through the analyses 636, data summaries 638,
and visualizations 640. The user interactions 642 may be
gathered during the learning period, and a user interaction
analyzer 648 may create a set of configurations and tracer list
entries that may be best match the user’s interactions.

Embodiment 600 illustrates an embodiment where a trac-
er’s actions may be determined by a tracer list that may be
refer to a set of configurations. Other embodiments may use
other data structures to store and retrieve settings that may be
applied by a tracer.

FIG. 7 is a diagram illustration of an embodiment 700
showing a system with mechanisms to update a tracer list
based on error logs. Embodiment 700 illustrates the general
flow and various components that may be implemented to
update a tracer list. The components illustrated may be hard-
ware components, software components operating on hard-
ware components, or some other configuration.

Embodiment 700 illustrates a system that may feedback
information into a tracer list 712 based on errors, bug reports,
or other documented failures. The feedback loop may gather
information in real time or through offline analysis, depend-
ing on the embodiment. The feedback information may
increase, decrease, or otherwise change the tracer operations
with respect to a single function or group of functions. In
some cases, the information fed back to the tracer list 712 may
cause tracing to be eliminated for certain functions.

An execution environment 702 may execute an application
704. The execution of application 704 may be represented by
an execution pointer 706, which may identify the current line
or function being executed.

The execution environment 702 is illustrated as executing
the application 704 in an instruction by instruction manner. In
some cases, the application 704 may be compiled prior to
execution, using a traditional compiler or a just in time com-
piler. Some execution environments may use interpreted code
or may execute machine code. Some execution environments
may use other mechanisms for executing an application.

As a function may be encountered in the application 704, a
tracer 708 may interact with a tracer list manager 710 to
determine how to trace the function. The tracer list manager
710 may query a tracer list 712 or other data structure which
may store the tracer operations to be performed for an indi-
vidual function or groups of functions.

The tracer list manager 710 may update the tracer list 712
may examining a code repository 714. The code repository
714 may include various libraries 716 which may be include
source or compiled code 718, bug reports 720, and various
metadata. A tracer list manager 710 may examine the bug
reports 720 or other metadata 722 to identify known problems
with tracing specific functions or groups of functions. The
tracer list manager 710 may update the tracer list 712 so that
subsequent tracer runs may avoid the known problems.

The bug reports 720 may be any definition of a known or
suspected problem related to the code in the library 716. The
bug reports 720 may be automatically generated reports that
may be captured by the tracer 708 or some other component.
In some cases, the automatically generated reports may
include links or other notations such that a tracer list manager
710 may be able to identify a bug report, then digest the bug
report to identify conditions under which tracing may be
changed.

The bug reports 720 may be manually entered or edited in
some cases. Such bug reports 720 may have a mechanism to
identify the tracer 708 such that the tracer list manager 710
may find the bug reports relating to the tracer 708. From the
bug reports, the tracer list manager 710 may be capable of

10

35

40

45

55

24

determining conditions under which tracing may be changed,
then update the tracer list 712 accordingly.

The code repository 714 may include a tracer library 724,
which may contain various code 726, bug reports 728, and
metadata 730 related to the tracer 708. In such a case, errors
may be captured and stored in the

The tracer list manager 710 may update the tracer list 712
by examining tracing history 732. Error lists 734 in the trac-
ing history 732 may define circumstances under which prob-
lems may have been encountered. By analyzing the error lists
734, the conditions under which an error may have occurred
may be avoided in future tracer runs by removing or changing
tracer operations. Such changes may be stored in the tracer
list 712 for later tracer runs.

FIG. 8 is a flowchart illustration of an embodiment 800
showing a method for using a tracer in a compiled execution
environment. Embodiment 800 shows a method whereby
tracing operations may be added to executable code during
compilation.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or terminol-
ogy to accomplish similar functions. In some embodiments,
various operations or set of operations may be performed in
parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to
illustrate some principles of operations in a simplified form.

Embodiment 800 illustrates a method whereby functions
may be identified during compilation, then instrumentation
may be added by wrapping the function with a tracer. The
compiled code may then be executed. Embodiment 800 may
embed tracing executable code into an application. The trac-
ing executable code may gather various data items and, in
some cases, process and store the items for later analysis.

The compilation of embodiment 800 may be compiling
from source code to intermediate code, from intermediate
code to executable code, from source code to executable code,
or any form of compilation. In some embodiments, the com-
pilation may be just in time compilation that may be per-
formed at runtime.

An application may be received in block 802 and compi-
lation may begin in block 804.

A function may be identified in block 806. The function
may be any block of code for which tracing may be applied.
In some cases, the function in block 806 may be a discrete
function call. In other cases, the function may be an arbitrary
block of code which may be traced. The function may have a
name or other identifier in the source code which may be
found in a tracer list.

A lookup may be performed in block 808 to identify the
function in a tracer list. When the tracer list contains an
expression to evaluate, the expression may be evaluated in
block 810. After querying the tracer list, a tracing configura-
tion may be determined in block 812.

The function may be compiled in block 814 with a tracing
wrapper. The tracing wrapper may be any type of tracing code
that may be added to the function to gather tracer information.
In some embodiments, the tracing wrapper may include set-
tings, data definitions, or other information that may cause the
tracer to collect specific data items. Some embodiments may
also include settings or other information that may be corre-
late, summarize, or otherwise prepare the raw tracer data for
downstream use.

If another function may be processed in block 816, the
method may return to block 806. When all the functions have
been processed in block 816, the compiled application may be
stored in block 818 and executed in block 820.

US 9,417,993 B2

25

FIG. 9 is a flowchart illustration of an embodiment 900
showing a method for using a tracer in an interpreted execu-
tion environment. Embodiment 900 shows a method whereby
tracing operations may be added to executable code while
interpreting the executable code.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or terminol-
ogy to accomplish similar functions. In some embodiments,
various operations or set of operations may be performed in
parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to
illustrate some principles of operations in a simplified form.

Embodiment 900 illustrates a method whereby functions
may be identified during interpreting the executable code,
then instrumentation may be added by wrapping the function
with a tracer. Embodiment 900 may add tracing executable
code into an application as an application executes. The trac-
ing executable code may gather various data items and, in
some cases, process and store the items for later analysis.

An application may be received in block 902 and execution
may begin in block 904.

During execution, a function may be identified in block
906. The function may be looked up in a tracer list in block
908. In many cases, the tracer list may include expressions
that may be evaluated to determine whether to trace a func-
tion, or the configuration of the tracing to perform on a func-
tion. In such cases, the function may be evaluated in block 910
and the tracing configuration may be determined in block
912.

The function may be wrapped with a tracer in block 914. In
some cases, the tracer may be configured in block 914 to
perform specific data collection and summarization opera-
tions.

The function may be executed in block 916 with the tracer.
As the function executes, the tracer may gather data in block
918 and summarize the data in block 920. The data may be
stored in block 922.

If another function may be processed in block 924, the
method may return to block 906. When all the functions have
been processed in block 924, the application may end in block
926.

FIG. 10 is a flowchart illustration of an embodiment 1000
showing a method for analyzing tracer data to adjust tracing
levels. Embodiment 1000 illustrates one method by which
tracing may be updated in real time, near-real time, or by post
processing tracer data.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or terminol-
ogy to accomplish similar functions. In some embodiments,
various operations or set of operations may be performed in
parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to
illustrate some principles of operations in a simplified form.

Embodiment 1000 illustrates a method whereby a tracer
may operate in an execution environment and generate tracer
data. The data may be analyzed to identify those functions for
which tracing may be increased or decreased.

An application may begin execution in block 1002. A func-
tion may be encountered in block 1004, and the function may
be traced in block 1006 to generate raw tracer data. The tracer
data may be summarized in block 1008.

Until the tracer data is ready for transmission in block
1010, the process may loop back to block 1004. When the
tracer data is ready for transmission in block 1010, the trans-
mission may occur in block 1012. The tracer counters may be
reset in block 1014 and the process may return to block 1004
to perform another loop.

10

15

20

25

30

35

40

45

50

55

60

65

26

The operations of blocks 1002 through 1014 may represent
a typical execution of an application with a tracer where the
tracer may transmit data on occasion. Some tracers may trans-
mit data on a periodic time basis, such as every second,
minute, hour, or some fraction thereof. Other tracers may
transmit data on an event, which may be an external event
received by the application or any other event.

Analysis of the tracer data to adjust the tracing levels may
occur in block 1016. In some embodiments, the operations of
block 1016, may be performed during the period of time when
the tracer may be looping at block 1010 prior to transmitting
the next set of tracer results. In such embodiments, the opera-
tions of block 1016 may be performed in ‘real time’ or near-
real time. Such embodiments may adjust or tune the tracer
based on the data that are being observed at any given time.

The tracer data may be received in block 1018. Each func-
tion identified in the tracer data may be analyzed in block
1020.

For each function in block 1020, the function’s contribu-
tion to the summary statistics may be analyzed in block 1022.
When the function’s contribution is appropriate in block
1024, the process may return to block 1020.

An appropriate contribution in the analysis of block 1022
may weigh whether or not the level of tracing matches the
function’s contribution to the statistics. When the function
contributes little to the statistics, an appropriate level of trac-
ing may be minimal tracing. When the function contributes a
large amount to one or more statistics, an appropriate level of
tracing may be higher.

The appropriate level of tracing for a given situation may
depend on the design of the tracing system and the analyses
performed on the raw data. Many such systems may use
predefined thresholds for determining appropriateness. For
example, a function that may contribute less than 1% to
summarized statistics may be traced at a minimal level, while
functions that contribute more may be traced at a higher level.
The higher level tracing may gather additional data points,
measurements, or other observations that may affect various
statistics.

In some cases, a function may have a specific configuration
that may override any adjustment. Such a configuration may
be identified in block 1026. When a specific configuration has
been defined for the function in block 1028, the function may
be left unchanged and the process may return to block 1020.

When the function does not have a specifically defined
configuration in block 1028 and the function’s contribution is
inappropriate in block 1024, the tracing for the function may
be adjusted.

When the function’s contribution is too large relative to the
function’s tracing level in block 1030, the tracing level may
bereduced in block 1032. When the function’s contribution is
too small relative to the function’s tracing level in block 1030,
the tracing level may be increased in block 1034.

The changes to the tracing level may be made by updating
a tracer list or other mechanism that may be define how a
function may be traced. In a real time or near-real time imple-
mentation of embodiment 1000, the tracer may limit the
amount of tracing performed on functions with little impact
on the tracing statistics, while making sure that the functions
which make an impact are adequately traced.

FIG. 11 is a flowchart illustration of an embodiment 1100
showing a method for user interaction data to adjust tracing
levels. Embodiment 1100 illustrates one method by which
tracing may be updated based on user interaction with tracer
data.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or terminol-

US 9,417,993 B2

27

ogy to accomplish similar functions. In some embodiments,
various operations or set of operations may be performed in
parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to
illustrate some principles of operations in a simplified form.

Embodiment 1100 illustrates one method by which user
interactions with tracer results may be used to identify func-
tions that may be more or less important than other functions.
Functions may be categorized by the interest level shown by
a user in data related to the function. Those functions for
which the user showed a large amount of interest may be
traced at a high level, while those functions for which the user
showed little interest may be traced at a relatively lower level.

Tracer data may be received in block 1102. The data may
be viewed using various visualizations in block 1104 and
analyzed in block 1106 with various user-selected analyses.
The data may be summarized in block 1108.

The user interactions with the various data representations
may be tracked in block 1110.

A use mode for the user may be determined in block 1112.
The use mode may refer to a set of tasks or goals that may be
achieved while interacting with tracer data. Examples of use
modes may include debugging mode, performance testing
mode, monitoring mode, and others. The modes may be used
to gather a set of tracer settings into a generalized configura-
tion that may apply to different manners in which a tracer may
be used.

Analysis of user interactions may happen in block 1114,
which may result in changes to tracing levels, and the changes
may be consolidated into configuration definitions.

Each use mode may be analyzed in block 1116. Within
each use mode, different tracer settings may define the data
collected by a tracer, as well as the summarization, analyses,
and other operations that may be performed on tracer results.

For each user mode in block 1116, high interest functions
may be identified in block 1118, and low interest functions
may be identified in block 1120. The high interest functions
may be those functions that underlie the analyses, visualiza-
tions, and other interactions that a user may have with tracer
data. The low interest functions may be those functions whose
tracer data may not have been viewed by users.

The interest level of a function may be determined from the
user’s actions performed with the data. Each embodiment
may have different mechanisms for classifying a function’s
interest level. One mechanism may identify each user inter-
action where data were viewed, and classify the underlying
functions as high interest. Those functions for which their
data were rarely or never viewed may be classified as low
interest.

Another mechanism for classifying user interest level in a
function may be to assign weights to different user interac-
tions. When a user collapses or minimizes a portion of a
visualization, those functions whose data were minimized
may be classified as low interest. Similarly, analyses that may
nothave been viewed or were viewed for short periods of time
may have the associated functions identified as low interest.
Conversely, those functions whose data may be viewed or
explored in detail may be classified as high interest.

Some interactions may be weighted as providing a higher
interest level than other interactions. For example, a visual-
ization where a user may expand and explore details relating
to certain functions may weight detailed browsing with a
higher weight than browsing the same visualization without
the detailed exploration of certain areas of the visualization.

The user interactions may be aggregated across multiple
users for the same tracer data set. In such embodiments, the

10

15

20

25

30

35

40

45

50

55

60

65

28

result of the analyses in block 1114 may be a configuration
that represents many user’s input.

The user interactions may be aggregated across tracer
results of multiple instances of the same application. In some
cases, the user interactions may reflect aggregated results
over user interactions with tracer results from multiple appli-
cations.

For each function in block 1122, the interest level may be
compared to the previous tracing level. If the interest level
matches the tracing level in block 1128, the tracing level may
be left unchanged. When the interest level does not match the
tracing level in block 1128, and the tracing level is too high in
block 1130, the tracing level may be lowered in block 1132.
When the interest level does not match the tracing level in
block 1129, and the tracing level is too low in block 1130, the
tracing level may be raised in block 1134.

The adjusted tracing levels may be consolidated into a
configuration definition in block 1136. The configuration set-
ting may reflect baseline settings that may apply to a specific
use mode.

FIG. 12 is a flowchart illustration of an embodiment 1200
showing a method for adjusting tracing based on errors iden-
tified during prior uses of the tracer. Embodiment 1200 illus-
trates one method by which tracing may be updated based on
bugs, error logs, or other sources of historical incidents.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or terminol-
ogy to accomplish similar functions. In some embodiments,
various operations or set of operations may be performed in
parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to
illustrate some principles of operations in a simplified form.

Embodiment 1200 is one example embodiment showing a
method for changing tracing operations based on historical
bug reports or errors.

An application may begin execution in block 1202. A func-
tion may be identified in block 1204 and an attempt at tracing
may be performed in block 1206. If no errors occurred in
block 1208, the process may loop back to block 1204.

When an error occurs in block 1208, metadata regarding
the error may be gathered in block 1210 and the error may be
stored in a database in block 1212. The metadata may include
any information that may relate to the error and may identify
potential factors that may have caused or may affect the error.

The errors may be analyzed in block 1214. The errors from
multiple traces may be aggregated in block 1216. In some
embodiments, errors from multiple applications may be
aggregated in block 1218.

For each function identified or derived from an error in
block 1220, the conditions under which the error occurred
may be analyzed in block 1222. A search may be made in
block 1224 for successful traces of the function under differ-
ent circumstances.

If no successful traces exist in block 1226, the tracer list
may be updated in block 1228 to exclude the function from
tracing. In such a case, the function may be completely
excluded or may have a very minimum level of tracing
applied.

When at least one successful trace was performed in block
1226, the conditions under which the error occurred may be
identified in block 1230 and a conditional expression may be
created for the tracer listin block 1232, which may prohibit or
limit the tracing under the conditions.

The foregoing description of the subject matter has been
presented for purposes of illustration and description. It is not
intended to be exhaustive or to limit the subject matter to the
precise form disclosed, and other modifications and varia-

US 9,417,993 B2

29

tions may be possible in light of the above teachings. The
embodiment was chosen and described in order to best
explain the principles of the invention and its practical appli-
cation to thereby enable others skilled in the art to best utilize
the invention in various embodiments and various modifica-
tions as are suited to the particular use contemplated. It is
intended that the appended claims be construed to include
other alternative embodiments except insofar as limited by
the prior art.

What is claimed is:

1. A computer-implemented method of determining when
a tracing level for a function may be increased or decreased,
the computer-implemented method being performed by at
least one computer processor executing computer executable
instructions for the computer-implemented method, which
comprises:

tracing at a first tracing level one or more functions of an

application to collect tracer data for the one or more
functions over a first time interval;

summarizing the collected tracer data in a summary;

for a given function, analyzing the summarized tracer data

relative to a first statistic to determine whether the col-
lected tracer data for the given function does not suffi-
ciently contribute to the summarized tracer data;

if the analyzed summary of the collected tracer data con-

tributes to said first statistic at a level that is below said
selected threshold, adjusting the first tracing level to
establish a second tracing level that requires collection
of more tracer data for the given function during a sub-
sequent time interval; and

wherein adjusting the first tracing level to establish the

second tracing level is based on analysis performed by a
user interaction analyzer that analyzes how a user inter-
acts with visualization of the collected tracer data to
identify which functions or groups of functions are of
interest to a user.

2. The computer-implemented method of claim 1, wherein
if the analyzed summary of the collected tracer data contrib-
utes to said first statistic at a level that is above a second
selected threshold that represents when the collected tracer
data for the given function contributes to much to the sum-
mary, adjusting the first tracing level to establish a second
tracing level that requires collection of less tracer data for the
given function.

3. The computer-implemented method of claim 1, wherein
said first statistic comprises a counted statistic.

4. The computer-implemented method of claim 3, wherein
said threshold comprises a percentage value contribution to
said first statistic.

5. The computer-implemented method of claim 4, wherein
said percentage value contribution is less than at least one of
the following percentages: 20%, 10%, 5%, 2%, 1%, 0.5%,
0.25% , and 0.1%.

6. The computer-implemented method of claim 1, wherein
the first tracing level is based on an offline analysis of tracer
data for the one or more functions, and wherein tracing at the
first tracing level over the first time interval, summarizing and
analyzing the collected tracer data and adjusting the first
tracing level to establish the second tracing level used during
the subsequent time interval are all performed in real time.

7. The computer-implemented method of claim 1, wherein
if the given function has a specific tracing configuration
defined for the given function, the specific tracing configura-
tion prevents adjusting the first tracing level to establish the
second tracing level.

8. The computer-implemented method of claim 1, wherein
said first time interval is a predefined time interval.

10

15

25

30

35

40

45

50

55

60

65

30

9. The computer-implemented method of claim 8, wherein
said subsequent time interval is an equivalent length of time
as said first time interval.

10. The computer-implemented method of claim 1,
wherein said first time interval defined by a first event and a
second event.

11. The computer-implemented method of claim 10,
wherein said subsequent time interval is a different length of
time than said first time interval.

12. A computing system that determines when a tracing
level for a function may be increased or decreased, compris-
ing:

at least one processor;

an execution environment operating on said at least one

processor, said execution environment executing an
application, comprising a plurality of functions;

a tracer executing within said execution environment, said

tracer performing the following:

traces at a first tracing level one or more functions of an
application to collect tracer data for the one or more
functions over a first time interval;

summarizes the collected tracer data in a summary;

for a given function, analyzes the summarized tracer
data relative to a first statistic to determine whether
the collected tracer data for the given function does
not sufficiently contribute to the summarized tracer
data;

if the analyzed summary of the collected tracer data
contributes to said first statistic at a level that is below
said selected threshold, adjusting the first tracing level
to establish a second tracing level that requires col-
lection of more tracer data for the given function
during a subsequent time interval; and

wherein adjusting the first tracing level to establish the
second tracing level is based on analysis performed by
a user interaction analyzer that analyzes how a user
interacts with visualization of the collected tracer data
to identify which functions or groups of functions are
of interest to a user.

13. The computing system of claim 12, wherein if the
analyzed summary of the collected tracer data contributes to
said first statistic at a level that is above a second selected
threshold that represents when the collected tracer data for the
given function contributes to much to the summary, adjusting
the first tracing level to establish a second tracing level that
requires collection of less tracer data for the given function.

14. The computing system of claim 12, wherein the first
tracing level is based on an offline analysis of tracer data for
the one or more functions, and wherein tracing at the first
tracing level over the first time interval, summarizing and
analyzing the collected tracer data and adjusting the first
tracing level to establish the second tracing level used during
the subsequent time interval are all performed in real time.

15. The computing system of claim 12, wherein if the given
function has a specific tracing configuration defined for the
given function, the specific tracing configuration prevents
adjusting the first tracing level to establish the second tracing
level.

16. A computer program product comprising one or more
computer hardware storage devices containing computer
executable instructions for implementing a computer-imple-
mented method of determining when a tracing level for a
function may be increased or decreased, wherein the com-
puter-implemented method is performed by at least one or
more processors executing the computer executable instruc-
tions, and wherein the computer-implemented method com-
prises: tracing at a first tracing level one or more functions of

US 9,417,993 B2

31

an application to collect tracer data for the one or more func-
tions over a first time interval; summarizing the collected
tracer data in a summary; for a given function, analyzing the
summarized tracer data relative to a first statistic to determine
whether the collected tracer data for the given function con-
tributes to said first statistic below a first selected threshold
that represents when the collected tracer data for the given
function does not sufficiently contribute to the summarized
tracer data; if the analyzed summary of the collected tracer
data contributes to said first statistic at a level that is below
said selected threshold, adjusting the first tracing level to
establish a second tracing level that requires collection of
more tracer data for the given function during a subsequent
time interval; if the analyzed summary of the collected tracer
data contributes to said first statistic at a level that is above a
second selected threshold that represents when the collected
tracer data for the given function contributes to much to the
summarized tracer data, adjusting the first tracing level to
establish a second tracing level that requires collection ofless
tracer data for the given function; and wherein adjusting the

10

15

32

first tracing level to establish the second tracing level is based
on analysis performed by a user interaction analyzer that
analyzes how a user interacts with visualization of the col-
lected tracer data to identify which functions or groups of
functions are of interest to a user.

17. The computer program product of claim 16, wherein if
the given function has a specific tracing configuration defined
for the given function, the specific tracing configuration pre-
vents adjusting the first tracing level to establish the second
tracing level.

18. The computer program product of claim 16, wherein
said first statistic comprises a counted statistic.

19. The computer program product of claim 18, wherein
said threshold comprises a percentage value contribution to
said first statistic.

20. The computer program product of claim 19, wherein
said percentage value contribution is less than at least one of
the following percentages: 20%, 10%, 5%, 2%, 1%, 0.5%,
0.25%, and 0.1%.

